Y=4x^2-32+10

Simple and best practice solution for Y=4x^2-32+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=4x^2-32+10 equation:



=4Y^2-32+10
We move all terms to the left:
-(4Y^2-32+10)=0
We get rid of parentheses
-4Y^2+32-10=0
We add all the numbers together, and all the variables
-4Y^2+22=0
a = -4; b = 0; c = +22;
Δ = b2-4ac
Δ = 02-4·(-4)·22
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{22}}{2*-4}=\frac{0-4\sqrt{22}}{-8} =-\frac{4\sqrt{22}}{-8} =-\frac{\sqrt{22}}{-2} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{22}}{2*-4}=\frac{0+4\sqrt{22}}{-8} =\frac{4\sqrt{22}}{-8} =\frac{\sqrt{22}}{-2} $

See similar equations:

| 1/7(7x)=19 | | 9||10=x | | 3(6s-5s)=1/12-1/6 | | 0.33(6x+3)=2.6 | | 8n+n=102 | | 0.5x+0.66=0.33x-0.66 | | 1/4y-3=92 | | 0.4m+2=24 | | 1/2x-5=1/4x-8 | | 2w^2-6w-45=0 | | 4y+16=0.33(10y-4) | | 3.5+1.2(6.3-7x=9.38 | | -4(-7w+5)-5w=5(w-5)-2 | | 0.15=x/20 | | 15+c=4 | | (2x+1)(2x+1)=3(x+1)(x+1) | | (2x+50)x(3x)=90 | | 1x+1x=11 | | (2x+50)+(3x)=90 | | (2x+50)(3x)=90 | | (-2+3)-(17x-3)=x | | 10+d=25 | | (70+70+80+75)+x=75 | | -3x-1x^2-5x+9x=0 | | 2+4x=5x-8=35 | | (4x-6)=70 | | 70+70+75+80+x=75 | | -45x^2+15x^2-10x=0 | | -17-6n=32 | | (x+1)(x+1)=2(x-1)(x-1) | | -23x+14-7x+6=10x-17+3x+4 | | -158=-26+a/15 |

Equations solver categories